Nucleic acid melting by Escherichia coli CspE

نویسندگان

  • Sangita Phadtare
  • Konstantin Severinov
چکیده

Escherichia coli contains nine members of the CspA family. CspA and some of its homologues play critical role in cold acclimation of cells by acting as RNA chaperones, destabilizing nucleicacid secondary structures. Disruption of nucleic acid melting activity of CspE led to loss of its transcription antitermination activity and consequently its cold acclimation activity. To date, the melting activity of Csp proteins was studied using partially double-stranded model nucleic acids substrates forming stem-loop structures. Here, we studied the mechanism of nucleic acid melting by CspE. We show that CspE melts the stem region in two directions, that CspE-induced melting does not require the continuity of the substrate's loop region, and CspE can efficiently melt model substrates with single-stranded overhangs as short as 4 nt. We further show that preferential binding of CspE at the stem-loop junction site initiates melting; binding of additional CspE molecules that fully cover the single-stranded region of a melting substrate leads to complete melting of the stem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Escherichia coli global gene expression profiles in response to overexpression and deletion of CspC and CspE.

The Escherichia coli cold shock protein CspA family consists of nine proteins (CspA to CspI), of which two, CspE and CspC, are constitutively produced at 37 degrees C and are involved in regulation of expression of genes encoding stress response proteins but can also perform an essential function during cold acclimation. In this study, we analyzed global transcript profiles of cells lacking csp...

متن کامل

The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells.

Members of bacterial Csp (cold-shock protein) family promote cellular adaptation to low temperature and participate in many other aspects of gene expression regulation through mechanisms that are not yet fully elucidated. Csp proteins interact with single-stranded nucleic acids and destabilize nucleic acid secondary structures. Some Csp proteins also act as transcription antiterminators in vivo...

متن کامل

Specificity of DNA binding and dimerization by CspE from Escherichia coli.

The CspE protein from Escherichia coli K12 is a single-stranded nucleic acid-binding protein that plays a role in chromosome condensation in vivo. We report here that CspE binds to single-stranded DNA containing 6 or more contiguous dT residues with high affinity (K(D) < 30 nM). The interactions are predominantly through base-specific contacts. When an oligonucleotide contains fewer than 6 cont...

متن کامل

Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli.

Nine homologous proteins, CspA to CspI, constitute the CspA family of Escherichia coli. Recent studies are aimed at elucidating the individual cellular functions of these proteins. Two members of this family, CspC and CspE, are constitutively produced at 37 degrees C. In the present study, these two proteins were evaluated for their cellular role(s). The expression of three stress proteins, Osm...

متن کامل

Cellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid

  Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005